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Abstract. Davies and Wakerly show that Byzantine fault tolerance can
be achieved by a cascade of broadcasts and middle value select functions.
We present an extension of the Davies and Wakerly protocol, the unified
protocol, and its proof of correctness. We prove that it satisfies validity
and agreement properties for communication of exact values. We then
introduce bounded communication error into the model. Inexact commu-
nication is inherent for clock synchronization protocols. We prove that
validity and agreement properties hold for inexact communication, and
that exact communication is a special case. As a running example, we
illustrate the unified protocol using the SPIDER family of fault-tolerant
architectures. In particular we demonstrate that the SPIDER interactive
consistency, distributed diagnosis, and clock synchronization protocols
are instances of the unified protocol.

Keywords: fault tolerance, protocol, SPIDER, Byzantine, reliability, Diagno-
sis, Interactive Consistency.

1 Introduction

Safety-critical real-time applications rely on basic fault-tolerant services such
as interactive consistency (IC), clock synchronization (CS), and distributed di-
agnosis (DD, also called group membership). These services are usually ren-
dered by distinct protocols that are designed, implemented, and validated sep-
arately. Examples of systems that provide these services are SAFEbus [HD92],
TTA [Kop97], and MAFT [KWFT88]. Rushby presents an overview of how sev-
eral architectures realize these fundamental services [Rus03].

Davies and Wakerly, in their ground-breaking paper [DW78], observed that
Byzantine fault tolerance can be achieved through a cascade of middle value
select functions. This is true when exact values are communicated, such as the
payload messages in IC or the accusations in DD. It is also true when inexact
values are communicated. By inexact values we mean values that range over
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the real numbers that may change by a bounded error during communication.
Timing values for CS or analog sensor values are typical examples. Correct op-
eration of a system crucially depends on both exact and inexact communication
satisfying suitable validity and agreement properties.

We introduce a generalization and extension of the Davies and Wakerly pro-
tocol, which we call the unified protocol. Instances of this general protocol provide
the core set of fault-tolerant services. We model the unified protocol formally
and prove validity and agreement results for both exact and inexact data, under
suitable fault assumptions. The exact case is precisely the inexact case with zero
accumulated error. We then demonstrate how the unified protocol can be used as
a basis for the IC, DD, and CS protocols for the SPIDER fault-tolerant architec-
ture [MMTP02]. We have verified the unified protocol using PVS [ORSvH95], a
semi-automated theorem-proving system developed at SRI. The PVS proof files
are available on the web [SPI].

The original contributions of this paper include a formally verified general-
ization of the Davies and Wakerly protocol, adapted to exploit diagnostic infor-
mation in the context of a hybrid fault model. In addition, we hope to rekindle
interest in Davies and Wakerly’s results, which provide an effective approach for
Byzantine fault tolerance for real-time embedded applications.

The structure of this paper is as follows. Section 2 presents the unified pro-
tocol. Section 3 presents the assumptions and requirements for the protocols
described in this paper. Section 4 presents the analysis of the protocol for ex-
act communication, and then illustrates how the SPIDER IC and DD protocols
are instances of the unified protocol. Section 5 presents the analysis when the
communication can introduce error, then demonstrates how the SPIDER CS
protocol is an instance of the unified protocol.

2 The Unified Protocol

The unified protocol is a multiple stage protocol which is constructed from a
single basic operation: a middle value select. In this section, we describe the
middle value select function and then present the unified protocol using it. We
conclude with a mapping of the unified protocol to the SPIDER fault-tolerant
architecture.

A distributed system is modeled as a graph with directed edges. Vertices
are called nodes and directed edges are called links. We call s the source node,
and d the destination node of the link (s, d). A communication stage is a set
of source nodes, a set of destination nodes, and a set of of links between them.
The absence of a link is modeled conservatively as a link fault. We allow both
nodes and links to fail. However, we abstractly model link failures as failures of
the source node [PMMG04].

2.1 Notation

We use i or j to refer to an arbitrary stage and k to refer to the total number
of stages. In the first stage of a k-stage protocol, each member of the set N0 of
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nodes broadcasts to all members of the set N1 of nodes; in the second stage, each
member of N1 broadcasts to all members of N2, and so forth, up through the
kth stage. Let us now fix an arbitrary stage i+1 for 0 ≤ i < k. The set of source
nodes is N i, and the set of destination nodes is N i+1. We use s, s1, s2, . . . ∈ N i

to denote source nodes and d, d1, d2, . . . ∈ N i+1 for destination nodes. When we
refer to a node without refering to a communication stage, we use n ∈ N i. In
the trivial example of a 0-stage protocol, no communication takes place and N0

is the only set of nodes.
Now we turn our attention to the values that are transfered at each stage.

We model payload data using real numbers. We augment the set of reals with
certain special values to indicate error conditions. Specifically we define a type
T by

T = {receive error} ∪ {source error i | i ∈ N} ∪ R.

Let vi(s) ∈ T denote the value that s ∈ N i intends to broadcast in stage i + 1.
After communication in this stage, each destination d has a vector of values
vi

d, such that vi
d(s) is d’s estimate of vi(s). If the message that d receives from

s is obviously incorrect (for example, it does not arrive within the expected
window or fails a cyclical redundancy check), then vi

d(s) = receive error . The
value source error i is a special message that is used to report the total absence
of credible sources in stage i + 1.

2.2 Middle Value Select

The main computation during the execution of a single stage of the protocol is
a middle value select voting algorithm. This algorithm chooses the middle value
from the vector of received values, vi

d. For the data type T , we extend the natural
order on the reals by the relations:

– receive error < source error0,
– source error i < source error j if i < j,
– source error i < x for all x ∈ R.

Values from sources that are known to be faulty can be excluded from con-
sideration. For this purpose, we define the filtered eligible sources, F i

d, to be the
set of sources whose values are included in the vote computed by node d. If the
cardinality of F i

d is even, any value between the two middle eligible values is an
acceptable result, provided that all good nodes implement the same selection
function. Let mvs(F i

d, v
i
d) denote the middle value of the received values from

the filtered eligible sources.

2.3 Protocol

The unified protocol is composed of a cascade of individual communication
stages. A k-stage protocol operates on the node sets N0, . . . , Nk. These sets
may or may not be disjoint. For 0 ≤ i < k, the algorithm for stage i+1 is shown
in Figure 1. Each destination node d maintains a set Ei

d ⊆ N i of eligible sources.
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The set Ei
d is based, in part, on d’s view of the failure status of the sources.

Recognize that because of faults and errors during communication, vi
d(s) may

differ from vi(s).

For stage i + 1, let s ∈ N i and d ∈ N i+1

Communication: Each source s broadcasts vi(s) to all destination nodes.
For each destination d, vi

d(s) denotes the value received from source s.
Computation: Each d computes

1. Ii
d = {s | vi

d(s) = receive error}
2. F i

d = Ei
d \ Ii

d

3. vi+1(d) =
{

source error i, if F i
d = ∅,

mvs(F i
d, v

i
d), otherwise.

Fig. 1. Unified Protocol

We assume that all correctly operating nodes share common knowledge of the
communication schedule. In order to maintain integrity of the communication
schedule, we require that correctly operating nodes be synchronized within a
known precision. This synchrony provides a global time reference to manage
the system’s time-triggered communication. Synchrony is maintained by a CS
protocol.

The protocol presented in Figure 1 generalizes the Davies and Wakerly (DW)
protocol [DW78]. In the DW protocol, every stage has the same number of
nodes. There is no such restriction on the unified protocol. Furthermore, the
DW protocol does not use accumulated diagnostic information. At each stage,
all nodes vote using identical sets of inputs. In the unified protocol, distinct nodes
may compute the vote using nonintersecting vote sets. This capability enables
the unified protocol to be analyzed using a weak hybrid fault assumption (see
Section 3.4).

2.4 Application: SPIDER

The Scalable Processor-Independent Design for Electromagnetic Resilience (SPI-
DER) is a family of general-purpose fault-tolerant architectures. The SPIDER is
designed at NASA Langley Research Center to support laboratory investigations
into various recovery strategies from transient failures caused by electromagnetic
effects [MMTP02]. The unified protocol is used in SPIDER to implement the
IC, CS, and DD protocols. One instance of the SPIDER architecture consists of
several Processing Elements (PE) communicating over a Reliable Optical Bus
(ROBUS). All application-level functions take place on the PEs. To the PEs, the
ROBUS operates as a Time Division Multiple Access (TDMA) broadcast bus.

The topology of the ROBUS is depicted in Figure 2. There are two types of
nodes internal to the ROBUS. The Bus Interface Units (BIU) provide the only
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interface to the PEs. The Redundancy Management Units (RMU) provide the
necessary replication for fault tolerance. There is no direct link between any pair
of BIUs nor any pair of RMUs.
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Fig. 2. ROBUS architecture

The primary uses of the unified protocol in the ROBUS are as 2- or 3-
stage protocol instances. In a 2-stage instance, three sets of nodes are involved:
N0, N1 and N2. For our subsequent discussions of the ROBUS protocols, N0

corresponds to a subset of the BIUs, N1 corresponds to the RMUs, and N2

corresponds to the BIUs. Communication is initiated from the BIUs (using in-
formation from their attached PE) who send their values to the RMUs. The
RMUs apply the middle value select and send their results back to the BIUs.
The BIUs then apply another middle value select and forward the result to the
PEs. Provided the system fault assumptions are maintained, the unified proto-
col allows the ROBUS to provide strong guarantees about the timeliness and
correctness of the communication between the various PEs.

3 Protocol Analysis

In this section, we explain the properties the unified protocol must satisfy: valid-
ity and agreement. After a description of the fault model, i.e., the covered kinds
of faults, we define a fault assumption which constrains the number of faults of
each kind. In the succeeding sections, we prove that the correctness conditions
hold under this fault assumption.

3.1 Correctness Conditions

The unified protocol solves both the distributed consensus problem and the ap-
proximate agreement problem, as defined in [Lyn96]. The IC and DD protocols
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solve specific instances of the distributed consensus problem, and the CS pro-
tocol solves a specific instance of the approximate agreement problem. Validity,
agreement, and termination conditions are specified for each kind of problem.
The unified protocol obviously terminates for a finite number of stages, so we
do not formally state or prove this condition.

Distributed Consensus Properties

Validity If all nonfaulty processes start with the same initial value v ∈ V ,
then v is the only possible decision value for nonfaulty processes.

Agreement No two nonfaulty processes decide on different values.

Approximate Agreement Properties

Validity Any decision value for a nonfaulty process is within the range of
the initial values of the nonfaulty processes.

Agreement The decision values of any pair of nonfaulty processes are
within ε of each other.

3.2 Fault Classification

Faults are classified according to the effect they have on the nodes of the sys-
tem. We use a hybrid fault model from Thambidurai and Park [TP88] with one
modification: benign nodes can sometimes behave as good nodes. The particular
advantage of this modification is that many intermittent faults are now counted
as benign, whence they are easy to mask. The nodes of the system are classified
as follows:

Good Each good node behaves according to specification; that is, it always
sends valid messages.

Benign Each benign faulty node either sends detectably incorrect messages to
every receiver, or sends valid messages to every receiver.

Symmetric A symmetric faulty node may send arbitrary messages, but each
receiver receives the same message.

Asymmetric An asymmetric (Byzantine) faulty node may send arbitrary mes-
sages that may differ for the various receivers.

A node that is not good is called faulty. A node is classified according to its worst
error manifestation during the classification period. For example, it is possible
for an asymmetric faulty node to behave in a manner that is observationally
indistinguishable from a good node at times during this period. These classifica-
tions form a “behavioral hierarchy” such that benign nodes can behave as if they
are good; symmetric nodes can behave as if they are benign or good, etc. We
let G, B, S, and A denote the sets of good, benign, symmetric, and asymmetric
nodes, respectively.

Good nodes always provide valid messages. Similarly, benign faulty nodes
never provide misleading information. We define a set of nodes C, such that
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the worst case error manifestation of a source in C is ommissive.1 That is, a
node in C can send a valid message or an obviously incorrect message, but can
never communicate an invalid message. From the definitions above, we know
that G ∪B ⊆ C.

We attribute all faults to the communication, i.e., we assume that the process-
ing of values by destination nodes is fault-free. We have described the rationale
for this abstraction in [PMMG04].

For the analyses presented in sections 4 and 5, we introduce the following
definitions and supporting facts. Unless we explicitly state otherwise, we assume
C ∩N i 6= ∅.

vi
max

df= max({vi(n) | n ∈ C ∩N i})

vi
min

df= min({vi(n) | n ∈ C ∩N i})
Lemma 1. For all n ∈ C ∩N i, if vi

min ∈ R, then vi(n) ∈ R .

Lemma 2. For all s ∈ C ∩N i and d ∈ C ∩N j, if vi
min, vj

min ∈ R, then

|vi(s)− vj(d)| ≤ max(vi
max − vj

min, vj
max − vi

min) .

3.3 Eligibility Assumptions

In order to have a basis for agreement, we require that the sets of eligible sources
differ only with respect to asymmetric sources.

Let X be a family of sets of nodes. We say that X satisfies the Eligible Sources
Property if all its members differ only in asymmetric nodes.

Definition 1 (Eligible Sources Property (ESP)).

ESP(X ) df= ∀X1, X2 ∈ X : n /∈ A =⇒ (n ∈ X1 ⇐⇒ n ∈ X2) .

Let Ii
d, F i

d be computed as in Figure 1. The families E i, Ii,F i, 0 ≤ i < k of sets
of eligible sources, ignored sources, and filtered eligible sources are respectively
defined as follows:

– E i df= {Ei
d | d ∈ N i+1} ,

– Ii df= {Ii
d | d ∈ N i+1} ,

– F i df= {Ei
d \ Ii

d | d ∈ N i+1} .

By definition, the filtered eligible sources inherit the Eligible Sources Prop-
erty from their constituents:

Lemma 3. If ESP(E i) and ESP(Ii), then ESP(F i).

We expect that E i is derived from accumulated knowledge about the s ∈ N i,
such that ESP(E i). In addition, we expect that the models of communication
be analyzed to ensure ESP(Ii) for all i. The property ESP(F i) can then be
deduced by Lemma 3.
1 Azadmanesh and Kieckhafer [AK00] introduce the notion of a strictly ommissive

asymmetric faulty node. In future work, we expect to extend our fault model to
include this additional classification.
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3.4 Fault Assumption

Nodes can exhibit incorrect behavior; that is, they can fail. We require an inde-
pendence of failure between nodes. Moreover we assume that a certain minimum
number of nodes are operating correctly. Engineering design and analysis has to
guarantee the satisfaction of these assumptions to a specified probability. A DD
protocol provides mechanisms that can increase the probability that a sufficient
number of nodes are operating correctly [LMK04].

Our fault assumption contains two clauses. Each clause is an assumption used
to guarantee that validity and agreement hold. Agreement is established using
two different fault assumptions: agreement propagation and agreement genera-
tion. We name the clauses after the proofs in which they play a role.

The first clause is called the Validity and Propagation Fault Assumption
(VPFA). It states that for each destination and each stage between j and k,
the majority of eligible, non-benign nodes are good. Formally,

Definition 2 (Validity and Propagation Fault Assumption (VPFA)).

VPFA(j, k) df= ∀i : j ≤ i < k =⇒ ∀d ∈ N i+1 : 2|G ∩ Ei
d| > |Ei

d \B|.

The second clause is called the Agreement Generation Fault Assumption
(AGFA). It states that some stage between j and k is free of asymmetric, eligible
nodes, and that the subsequent stages satisfy the VPFA. Formally,

Definition 3 (Agreement Generation Fault Assumption(AGFA)).

AGFA(j, k) df= ∃i : j ≤ i < k∧ESP(E i)∧VPFA(i+1, k)∧∀d ∈ N i+1 : |A∩Ei
d| = 0 .

We have the following supporting lemmas:

Lemma 4. For d ∈ N i+1, if 2|G ∩ Ei
d| > |Ei

d \B|, then 2|C ∩ F i
d| > |F i

d|.

Lemma 5. For d1, d2 ∈ N i+1, if |A ∩ Ei
d1
| = |A ∩ Ei

d2
| = 0, ESP(E i), and

ESP(Ii), then F i
d1

= F i
d2

.

3.5 Application: SPIDER

For the ROBUS architecture described in Section 2.4, we let N2i denote the
BIUs and N2i+1 denote the RMUs, for any k-stage SPIDER protocol and 0 ≤
i < k. For k ≥ 2, the SPIDER Maximum Fault Assumption is VPFA(j, j + k) ∧
AGFA(j, j + k). This is equivalent to the following restatement of the SPIDER
Maximum Fault Assumption [GM03]:

1. 2|G ∩ Er| > |Er \B| for all RMUs r, and
2. 2|G ∩ Eb| > |Eb \B| for all BIUs b, and
3. |A ∩ Er| = 0 for all RMUs r, or |A ∩ Eb| = 0 for all BIUs b.
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4 Exact Agreement

In this section, we analyze the unified protocol assuming exact communications.
We prove validity, agreement propagation and agreement generation under two
assumptions on the communication. This framework is a special case of inex-
act communication, addressed in the next section. However, this special case is
simpler, so we present it first.

4.1 A Model of Exact Communication

For exact communication we assume that destinations receive exactly the mes-
sages sent by good sources, that messages from benign faulty sources are either
correct or ignored, and that all destinations receive exactly the same messages
from non-asymmetric sources.

More formally, we assume the following properties for the communication
step in stage i + 1:

Assumption 1 For all s ∈ C ∩N i and d ∈ N i+1,

– s /∈ G and vi
d(s) = receive error, or

– vi
d(s) = vi(s).

Assumption 2 For all s ∈ N i \A and d1, d2 ∈ N i+1, vi
d1

(s) = vi
d2

(s).

These assumptions define an implementation requirement for the commu-
nication subsystem for any consensus protocol based on exact communication.
The assumptions were constructed to ensure ESP(Ii).

4.2 Exact Agreement Results

In this section, we present the properties of the k-stage protocol presented in
Section 2.3 using the communication assumptions presented in Section 4.1.

Theorem 1 (Upper Validity). If VPFA(j, j + k), then vj+k
max ≤ vj

max.

Proof. By induction on k.
The base case, k = 0, is trivial, so assume k > 0. By the induction hypothesis,

we know that vj+k−1
max ≤ vj

max. It remains to show that vj+k
max ≤ vj+k−1

max . Choose
d ∈ C ∩ N j+k such that vj+k(d) = vj+k

max. By VPFA(j, j + k), we know that
2|G ∩ Ej+k−1

d | > |Ej+k−1
d \ B|. By Lemma 4, we know that 2|C ∩ F j+k−1

d | >

|F j+k−1
d |. The pigeonhole principle ensures that there is an s ∈ C ∩F j+k−1

d such
that vj+k(d) ≤ vj+k−1

d (s). Assumption 1 ensures that vj+k−1
d (s) = vj+k−1(s).

The definition of vj+k−1
max ensures that vj+k−1(s) ≤ vj+k−1

max . ut

Theorem 2 (Lower Validity). If VPFA(j, j + k), then vj
min ≤ vj+k

min .

Proof. Similar to the proof of Theorem 1. ut
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The following corollaries are direct consequences of Theorems 1 and 2.

Corollary 1 (Consensus Validity). If VPFA(j, j + k) and vj
max = vj

min = v,
then vj+k

max = vj+k
min = v.

Corollary 2 (Master-Slave). If VPFA(j, j +k), vj
min ∈ R, and vj

max− vj
min ≤

∆, then for all s ∈ C ∩N j, d ∈ C ∩N j+k we have |vj(s)− vj+k(d)| ≤ ∆ .

Corollary 3 (Agreement Propagation). If VPFA(j, j + k), vj
min ∈ R, and

vj
max − vj

min ≤ ∆, then vj+k
max − vj+k

min ≤ ∆.

Corollary 3 ensures that agreement among receivers will be at least as good
as the agreement among the sources. However, it does not provide assurance that
exact agreement will ever be achieved. Specifically, the presence of an eligible
asymmetric faulty node in every stage can prevent exact agreement.

Theorem 3 (Agreement Generation). If AGFA(j, j + k) then vj+k
max = vj+k

min .

Proof. By AGFA(j, j + k), there is a i < k such that VPFA(j + i + 1, j + k),
and |A ∩ Ej+i

d | = 0, for all d ∈ C ∩ N j+i+1. By Lemma 5, we know that
F j+i

d1
= F j+i

d2
= F , for d1, d2 ∈ C ∩N j+i+1. Since F ⊆ N j+i \ A, Assumption 2

ensures that vj+i
d1

(s) = vj+i
d2

(s) for all s ∈ F . Thus, vj+i+1
max = vj+i+1

min . From
Corollary 1, we get vj+k

max = vj+k
min . ut

4.3 Application: SPIDER Interactive Consistency

The SPIDER interactive consistency protocol [MMTP02] is an instance of the
2-stage unified protocol. The properties we require of interactive consistency are
the distributed consensus properties as defined in Section 3.1.

Let s be some BIU that intends to send a value to all other BIUs. Next let v2

be computed using a 2-stage exchange with N0 = {s}, N1 the set of all RMUs,
and N2 the set of all BIUs. The interactive consistency protocol for d ∈ N2 is:

ic(d) =

{
v2(d), if v2(d) = majority(F 1

d , v1
d),

no majority , otherwise,

where no majority is a distinguished constant.

Theorem 4 (IC validity). If s ∈ G and VPFA(0, 2), then ic(d) = v(s).

Proof. Since we have a singleton source set, v0
min = v0

max = v(s). The result
follows directly from Corollary 1 for k = 2. ut

Theorem 5 (IC agreement). If AGFA(0, 2), then ic(d1) = ic(d2).

Proof. The result follows from Theorem 3 for k = 2. ut
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In addition, we are able to gather some diagnostic information about the
source BIU, s. The following corollaries follow from Theorems 4 and 5, respec-
tively.

Corollary 4. If VPFA(0, 2) and ic(d) = source error0, then s /∈ G.

Corollary 5. If AGFA(0, 2) and ic(d) = no majority, then s ∈ A.

4.4 Application: SPIDER Distributed Diagnosis

Distributed on-line diagnosis consists of two main parts. First, nodes accumulate
evidence of faulty behavior by other nodes. Second, this local evidence must be
reliably distributed to allow for global decisions.

There are several mechanisms for accumulating evidence of faulty behavior.
There are indirect mechanisms, such as those provided by Corollaries 4 and 5.
There are also several direct accusation mechanisms. These include communica-
tion resulting in receive error and disagreement with results during an agreement
propagation stage.

We let Dn(def ) ∈ N represent node n’s accumulated evidence against defen-
dant def . If Dn(def ) = 0, then n has no recent evidence of faulty behavior by
def . A larger Dn(def ) indicates more severe misbehavior by def .

We require that a good node can never make a false accusation. Formally,
if n ∈ C and Dn(def ) > 0, then def /∈ G. The role of the distributed diagnosis
protocol is to achieve global consensus from locally gathered accusations. Strictly
speaking, SPIDER does not require a distributed diagnosis protocol. It is possible
for the locally gathered accusations to satisfy the required assumptions. However,
by periodically exchanging diagnostic information, we can remove accumulated
disagreement caused by asymmetric faults. This can increase the probability that
our fault assumptions are true, thus increasing the predicted reliability of the
system [LMK04].

The SPIDER DD protocol is a 3-stage instance of the unified protocol. The
first two stages are to assure agreement among the BIUs. The third stage is to
propagate this consensus diagnostic information to the RMUs.

Let v0(b) = Db(def ), and v2 and v3 be computed using the 3-stage unified
protocol. Thus, v0

max is the most severe correct local accusation against def and
v0
min is the least severe accusation.

Theorem 6 (DD Validity). If VPFA(0, 3), then for b ∈ C ∩N2, r ∈ C ∩N3,

– If v2(b) > 0, then def /∈ G.
– If v3(r) > 0, then def /∈ G.

Proof. Both clauses are direct consequences of Theorems 1 and 2. ut

Theorem 7 (DD Agreement). If AGFA(0, 3) then for b ∈ C∩N2, r ∈ C∩N3,
v2(b) = v3(r).

Proof. Follows from Theorem 3 and Corollary 1. ut
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The preceding results ensure consensus based on the BIUs local accusations
against def . A similar protocol beginning with the RMUs ensures consensus
based on the RMUs accusations against def . The maximum of the two results
also satisfies validity and agreement.

5 Approximate Agreement

In this section we generalize the exact communication assumptions to accommo-
date error introduced in the communication phase. The results in Section 4 are
all special cases of the results introduced in this section.

Analog information can be understood as a real valued, uniformly continu-
ous function of time [Ros68]. Uniform continuity roughly means that the rate of
change is bounded. For processing in a digital system, a digital approximation
of the function value at a given moment is determined: the function is sampled.
There are various sources of imprecision. For instance, the actual time of sam-
pling may vary or the sampled value may be superposed with noise. The purpose
of the inexact protocol is to reliably communicate values that may vary and may
be further distorted during communication.

5.1 A Model of Inexact Communication

We model communication as in the exact case, but add terms representing the
inherent imprecision of broadcasting inexact information. The error terms εl, εu,
and ε are nonnegative reals. We define ε

df= εl + εu.
We assume that messages from good nodes are correctly received within a

known error tolerance, that messages from benign faulty nodes are either ignored
or are correctly received within a known tolerance, and that only asymmetric
nodes may introduce disagreement beyond ε in the communication phase. We
allow the communication error bounds, εl and εu, to differ as the error may be
biased. Formally, the assumptions for stage i + 1 are:

Assumption 3 For all s ∈ C ∩N i and d ∈ N i+1:

– s /∈ G and vi
d(s) = receive error,

– receive error < vi
d(s) = vi(s) < source error i, or

– vi(s) ∈ R and vi(s)− εl ≤ vi
d(s) ≤ vi(s) + εu.

Assumption 4 If s ∈ N i \A, then for d1, d2 ∈ N i+1:

– vi
d1

(s) = vi
d2

(s) < source error i, or
– vi

d1
(s), vi

d2
(s) ∈ R and |vi

d1
(s)− vi

d2
(s)| ≤ ε.

When ε = εl = εu = 0, Assumptions 3 and 4 reduce to Assumptions 1 and 2.
Thus, exact communication is a special case of inexact communication.
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5.2 Approximate Agreement Results

The following results generalize the results from Section 4.2, by introducing the
effects of bounded errors. By requiring vj

min ∈ R for these results, we avoid
the clutter of defining arithmetic involving source error . These results can be
extended to handle such special cases.

Theorem 8 (Inexact Upper Validity). If VPFA(j, j+k) and vj
min ∈ R, then

vj+k
max ≤ vj

max + kεu.

Proof. Similar to proof of Theorem 1. ut

Theorem 9 (Inexact Lower Validity). If VPFA(j, j +k) and vj
min ∈ R, then

vj
min − kεl ≤ vj+k

min .

Proof. Similar to proof of Theorem 1. ut

Corollary 6 (Inexact Master-Slave). If VPFA(j, j + k), vj
min ∈ R, and

vj
max − vj

min ≤ ∆, then for all s ∈ C ∩N j, d ∈ C ∩N j+k we have

|vj(s)− vj+k(d)| ≤ ∆ + max(kεl, kεu).

Proof. Follows directly from Lemma 2 and Theorems 8 and 9. ut

Corollary 7 (Inexact Agreement Propagation). If VPFA(j, j +k), vj
min ∈

R, and vj
max − vj

min ≤ ∆, then

vj+k
max − vj+k

min ≤ ∆ + kε .

Proof. From Theorems 8 and 9, we have vj+k
max − vj+k

min ≤ (vj
max + kεu)− (vj

min −
kεl) ≤ ∆ + kε. ut

Theorem 10 (Inexact Agreement Generation). If AGFA(j, j + k) and
vj+k
min ∈ R, then

vj+k
max − vj+k

min ≤ kε.

Proof. Similar to proof of Theorem 3. ut

5.3 Application: SPIDER synchronization protocol

A clock is formalized as a function from clock time to real time. Clocks dis-
tributed in a system need to be re-synchronized periodically in order to prevent
them from drifting too far apart. The two goals of synchronization are:

Accuracy All good clock readings are within a linear envelope of real time.
Precision At all times, the clock times of all good clocks differ by a bounded

amount.
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Prior formal models of fault tolerant clock synchronization [SvH98,Min93,Sha92]
have established a systematic way to derive accuracy and precision from the
following properties:

Accuracy Preservation The resynchronization time of a good clock is within
the expected resynchronization times of good clocks, up to an error margin.

Precision Enhancement If the skew of good clocks is within a known bound
at the time of protocol execution, then all good clocks are synchronized to
within a tighter skew after protocol execution

Below we show how to prove accuracy preservation and precision enhance-
ment, using validity and agreement properties of the unified protocol. The val-
ues communicated during this protocol are estimates of the real time that nodes
should reset their clocks for the next period.

Let cn(T p+1) ∈ R denote the real time that node n expects to begin synchro-
nization period p + 1. Let c′n(T p+1) denote the real time that node n actually
begins period p + 1. Put another way, cn models n’s clock before resynchroniza-
tion, and c′n models n’s clock after resynchronization.

The SPIDER synchronization protocol is a 3-stage instance of the unified
protocol. The BIUs are N0 and N2, the RMUs are N1 and N3. Let v0(b0) =
cb0(T

p+1), for BIU b0 ∈ N0. Then, for all b ∈ N2, r ∈ N3, define

c′b(T
p+1) df= v2(b)

c′r(T
p+1) df= v3(r)

The values εl and εu bound the variation of clock readings caused by drift,
jitter, and differences in communication delay. Let cmin(p) and cmax(p) denote
the minimal and maximal values of all cb(T p+1) such that cb is a correct BIU
clock at round p.

Within the ROBUS, we are principally concerned with the accuracy of the
BIUs, as these provide time references for the PEs. If needed, a similar argument
can be used to bound the accuracy of the RMUs.

Theorem 11 (BIU Accuracy Preservation). If VPFA(0, 2) holds during
synchronization period p, then for all good BIU clocks c′b:

cmin(p)− 2εl ≤ c′b(T
p+1) ≤ cmax(p) + 2εu.

Proof. Follows immediately from Theorems 8 and 9. ut

Precision results are given for the set of BIUs, the set of RMUs, and between
the BIUs and RMUs. This last result provides the skew bounds necessary to
reliably communicate within the ROBUS.

Theorem 12 (Precision Enhancement). If AGFA(0, 3) then

1. |c′b1(T
p+1)− c′b2(T

p+1)| ≤ 2ε,
2. |c′r1

(T p+1)− c′r2
(T p+1)| ≤ 2ε,
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3. |c′b(T p+1)− c′r(T
p+1)| ≤ 2ε + max(εl, εu).

Proof. Clauses 1 and 2 each follow from Theorem 10 (Clause 1 using AGFA(0, 2),
and Clause 2 using AGFA(1, 3)). Clause 3 is a consequence of Clause 1 and
Corollary 6. ut

6 Concluding Remarks

We introduce a formal model of an extension of the Davies and Wakerly protocol,
called the unified protocol. We prove that under a weak hybrid fault assumption,
the unified protocol satisfies validity and agreement, both for exact and inex-
act communication. Three fundamental fault-tolerant protocols are shown to be
instances of the unified protocol.

With the unified protocol, the analysis of fault-tolerance properties can be
restricted to one general protocol. In this way, the unified protocol provides a
useful abstraction layer: the analysis of the fault tolerance is not complicated by
specific concerns of individual protocols. For the SPIDER architecture, this has
resulted in simpler specifications. This in turn yields a simpler implementation
and more transparent treatment of the separate functions. Although we have
not yet performed the analysis, we believe that the SPIDER transient recovery
and restart protocols are also instances of the unified protocol.

The unified protocol is flexible and can be adapted to other fault tolerant
applications. In particular, it should be possible to adapt some of the arguments
provided by Caspi and Salem [CS00] to bound the effects of computation error
for locally computed control functions between communication stages.

In addition, we expect that our results may be extended to analyze other ar-
chitectures. Similar arguments may be constructed under weaker fault assump-
tions. In particular, we intend to explore the benefits of extending our analysis
to incorporate the strictly ommissive asymmetric classification introduced by
Azadmanesh and Kieckhafer [AK00]. We also plan to explore a wider range of
fault tolerant averaging functions within our PVS framework. Ultimately, we
intend to provide a PVS library of reusable fault tolerance results.
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